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Definition
Let R be a ring and M a right R-module.

M is called a Ci-module if it has the following Ci properties for i = 1,2, 3.
C1: Every submodule of M is essential in a direct summand of M.

C2: Whenever A and B are submodules of M with A= B and B C® M,
then A C® M.

C3: Whenever A and B are direct summands of M with AN B = 0, then
A+ BC® M.
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Definition
A module M is called a Di-module if it satisfies the following
Di-conditions.

D1: For every submodule A of M, there is a decomposition
M = M; & My such that M; C Aand AN M, < M.

D2: Whenever A and B are submodules of M with M/A = B and
B C® M, then A C® M.

D3: Whenever A and B are direct summands of M with A+ B = M,
then AN B C® M.
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Definition
M is called continuous if it is C1 and C2, and quasi-continuous if it is
C1 and C3.
C2= C3
quasi-injective = continuous
Definition

A module M is called discrete if it is both a D1- and a D2 -module,
quasi-discrete if it is both a D1- and a D3-module.

quasi-projective = D2 = D3
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C4-Modules via Perspective Submodules

Proposition [Amin et al., 2015]

If M is a C3-module, then for every decomposition M = A® B and every
homomorphism f : A — B with ker f C® A, then Imf C® B.

[Amin et al., 2015]
The following are equivalent for a module M:
(1) fM=A@® B and f : A— B is a monomorphism, then Imf C® B.

(2) fM=A@®B and f : A— B is a homomorphism with ker f C% A,
then Imf C9 B.
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Definition [Ding et al., 2017]

A module M is called a C4-module if it satisfies any of the equivalent
conditions in the above.

C3= C4
Definition

A module M is called (summand-) square-free if whenever N C M and
N = Yl D Y2 with Yl = Y2 (and Yl, Y2 g® M), then Yl = Y2 =0.

summand-square-free = C4
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Definition
Two direct summands A and B of a module M are perspective exactly

when there exists a common direct sum complement C, i.e.,
M=AaC=BoC.

Theorem 1.1

The following are equivalent for a module M:

(1) M is a C4-module.

(2) If A and B are perspective direct summands of M with AN B =0,
then A® B C® M.

(3) If A and B are perspective direct summands of M with
ANB C® M, then A+ B C® M.



L C4-Modules via Perspective Submodules

Theorem 1.2

Let M = ®;c/M; be a module, where M; is fully invariant in M for every
i € 1. Then M is a C4-module if and only if each M; is a C4-module.
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Definition 1.3

A module M is said to satisfy the restricted ACC on summands (r -
ACC on summands, for short) if, M has no strictly ascending chains of
non-zero summands

A
B:

A G
By G

LAR\'8

with A; &£ B; and A; N B; =0 for all / > 1.
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Definition 1.3

A module M is said to satisfy the restricted ACC on summands (r -
ACC on summands, for short) if, M has no strictly ascending chains of
non-zero summands

A
B;

A G
By G

LAR\'8

with A; = B; and A; N B; =0 for all / > 1.
ACC on summands = r - ACC on summands

summand-square-free = r - ACC on summands



LC4-Modules via Perspective Submodules

Theorem 1.4

If M is a C4-module that satisfies the restricted ACC on summands,
then M = A® B® K where A= B is a C2-module and K is a
summand-square-free module.
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Let M be a right R-module and S = Endg(M).

» If Ss is a right C2-module, then Mg is C2; the converse is true if
ker(«) is generated by M whenever « is such that rs(«) is a direct
summand of Ss [Nicholson and Yousif, 2003].

» If Ss is a right C3-module, then Mg is C3 [Amin et al., 2015]; the
converse is true if for every pair of idempotents e, f € S with
eSNfS =0 we have eM N fM = 0 by [Mazurek et al., 2015].

» If S is a right C4-module, then Mg is C4; the converse is true if for
every pair of idempotents e, f € S with eSN 1S = 0 we have
eM N fM = 0 [Ding et al., 2017].



Endomorphism Rings of C4-Modules

Theorem 2.1

Let M be a right R-module with S = Endg(M). Then S is a right
Cé4-ring, if M is a C4-module and one of the following is satisfied.
(1) M is k-local-retractable.

(2) For any @ € S, ker(c) is generated by M.

(3) For every pair of perspective idempotents e, f € S with eSN S5 =0,
we have eM N fM = 0.
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Proposition 2.2

Let M be a right R-module with S = Endg(M). Then the following are
equivalent:

(1) Mis a C4-module.

(2) For every pair of perspective idempotents e, f € S with
eM N fM = 0, there exists an idempotent g of S such that
eM = gM and fM C (1 — g)M.



Endomorphism Rings of C4-Modules

Proposition 2.2

Let M be a right R-module with S = Endg(M). Then the following are
equivalent:
(1) Mis a C4-module.

(2) For every pair of perspective idempotents e, f € S with
eM N fM = 0, there exists an idempotent g of S such that
eM = gM and fM C (1 — g)M.

Proposition 2.3

A right R-module M is C4 if and only if for any idempotents
e, f € Endg(M), if kere = kerf = ker(e — f), then (1 — e)fM C® M.
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Proposition 3.1

Let R; (i € I) be any collection of rings, and let R be the direct product
[I;c/ Ri- Then R is a right C4-ring if and only if every R; is a right
C4-ring.
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Proposition 3.1

Let R; (i € I) be any collection of rings, and let R be the direct product
[I;c/ Ri- Then R is a right C4-ring if and only if every R; is a right
C4-ring.

Proposition 3.2

If R is a right C4-ring, then so is eRe for any idempotent e € R such
that ReR = R.
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LRight C4 rings

Example 3.3

The condition ReR = R is not superfluous in Proposition 3.2: Let R be
the algebra of matrices, over a field F, of the form

O OO OOoOWw
O OO OT X
O OO n OO
OO0 uw <K OO
O T OO oo
0O N O O OO

> e:= ey + exn + €33 + e + 655, Where ej are the matrices with
(i,/)-entry 1 and all other entries zero.

> e is an idempotent of R such that ReR # R.
» R is a quasi-Frobenius ring by [Koike, 1995] = R is right C4.
> eRe = (£ £) is not a right C4-ring.
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» Let R be a ring and M an R-R-bimodule.
Then the trivial extension R o< M is a ring whose underlying group is
R x M with the multiplication defined by

(r,m)(s,n) = (rs, rn + ms)

where r,s € R and m,n € M.



LRight C4 rings

» Let R be a ring and M an R-R-bimodule.
Then the trivial extension R o« M is a ring whose underlying group is
R x M with the multiplication defined by

(r,m)(s,n) = (rs, rn + ms)

where r,s € R and m,n € M.

Proposition 3.4
Let R be a ring and M an R-R-bimodule.

1) If R o< M is a right C4-ring, and for any idempotents e, f € R,
eRNfR =0 implies eM N fM = 0, then R is a right C4-ring.

2) If R is a right C4-ring, and eM(1 — e) = 0 for any idempotent
e € R, then R o< M is a right C4-ring.
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Proposition [Yousif et al., 2014]

If M is a D3-module, then for every decomposition M = A® B and every
homomorphism f : A — B with Imf C® B, then ker f C® A.



D4-Modules via Perspective Submodules

Proposition [Yousif et al., 2014]

If M is a D3-module, then for every decomposition M = A® B and every
homomorphism f : A — B with Imf C® B, then ker f C® A.

[Yousif et al., 2014]

The following are equivalent for a module M:

(1) f M=A@® B with A, BC M and f : A— B is an epimorphism,
then ker f C® A.

(2) f M=A® B with A,BC M and f : A— B is a homomorphism
with Imf C® B, then ker f C® A.
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Definition [Ding et al., 2017]

A module M is called a D4-module if it satisfies any of the equivalent
conditions in the above theorem.
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Definition [Ding et al., 2017]

A module M is called a D4-module if it satisfies any of the equivalent
conditions in the above theorem.

D3 = D4

Definition [Ding et al., 2017]

A module M is called summand-dual-square-free if M has no proper
direct summands A and B with M = A+ B and M/A= M/B.

summand-dual-square-free = D4



LD4-Modules via Perspective Submodules

Theorem 4.1

The following conditions on a module M are equivalent:

(1) Mis a D4-module.

(2) If A and B are perspective direct summands of M with A+ B = M,
then AN B C%® M.

(3) If A and B are perspective direct summands of M with
A+ BC® M, then ANB C® M.



LD4-Modules via Perspective Submodules

Proposition 4.2
The following conditions on a module M are equivalent:

(1) M is a D4- and summand-square-free module.

(2) M is a C4- and summand-dual-square-free module.



D4-Modules via Perspective Submodules

Proposition 4.2
The following conditions on a module M are equivalent:

(1) M is a D4- and summand-square-free module.
(2) M is a C4- and summand-dual-square-free module.

Corollary 4.3

Rg is summand-square-free if and only if Rg is C4 and
summand-dual-square-free .
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Definition 4.4

A module M is said to satisfy the restricted DCC on summands if, M has
no strictly descending chains of non-zero summands

Al 2 A2

Bl 2 B2

with M/A; =2 M/B; and A; + B; C® M for all i > 1.
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Theorem 4.5

If M is a D4-module that satisfies the restricted DCC on summands,
then M = A® B @ K where A= B, A and B are D2-modules, and K is
a summand-dual-square-free module.



D4-Modules via Perspective Submodules

Theorem 4.5

If M is a D4-module that satisfies the restricted DCC on summands,
then M =A@ B&® K where A= B, A and B are D2-modules, and K is
a summand-dual-square-free module.

Corollary 4.6

If R is I-finite, then Rk = A® B® K with A= B and K a
summand-dual-square-free module.



D4-Modules via Perspective Submodules

Theorem 4.5

If M is a D4-module that satisfies the restricted DCC on summands,
then M =A@ B&® K where A= B, A and B are D2-modules, and K is
a summand-dual-square-free module.

Corollary 4.6

If R is I-finite, then Re = A® B® K with A= B and K a
summand-dual-square-free module. Moreover, if R is also a right C4-ring,
then Rp = A® B ® K where A= B are C2-modules and K is both a
summand-dual-square-free as well as a summand-square-free module.
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